

CFD Analysis of RRS-MC500 Air Flow Analysis

Objective:

➢ Run the CFD analysis to check the Airflow performance and identify turbulence region if any inside MC500 unit.

Scope:

To predict the Air Flow pattern inside the MC500 unit

CFD Model – MC500 – Supply side

CFD Model – MC500 – Return side

CFD Model – MC500 – Supply side

CFD Model – MC500 – Exhaust side

Static core modelled as block (porous media) in CFD

Static Pressure Drop Static core – MC500		
Volume Flowrate (CFM)	Pressure Drop (In Wg)	
350	0.56	
500	0.87	
750	1.48	

Y – Pressure Drop (pa)

X – Velocity (m/s)

CFD Model – MC500 – Filter

Static Pressure Drop Filter – MC500		
Volume Flowrate (CFM)	Pressure Drop (In Wg)	
590	0.14	
980	0.25	
1215	0.34	

Y – Pressure Drop (pa)

X – Velocity (m/s)

Boundary Conditions – MC500

Boundary Conditions (Supply & Exhaust)		
Extended Inlets	Pressure Inlet (0 PSI)	
Extended Outlets	Pressure Outlet (0 PSI)	
Fan Blades	Moving Reference Frame (1500 RPM)	
Filters	Porous Medium	
Static Core	Porous Medium	

Fan blades rotation are modelled by the Moving Reference Frame (MRF) method.

Pressure drop for MC 500 Filter and Static Core has been recorded in the table below

	Supply Air Unit	Exhaust Air Unit
Flowrate (CFM)	808	592.2

	Supply Air Unit ∆ Ps (in.w.g.)	Exhaust Air Unit ∆ Ps (in.w.g.)
Filter	0.151	0.107
Static Core	0.428	0.687

CFD Results – MC500 Supply Side

Results : Velocity Contour

Results : Velocity Contour

Results : Velocity Contour at Filter Outlet

Results : Velocity Contour at Static Core

Uniformity index close to 1 which indicates uniform air-flow

Results :Streamlines

Results :Streamlines

CFD Results –MC500 Exhaust Side

Results : Velocity Contour

Results : Velocity Contour

Results : Velocity Contour at Filter Outlet

21

Results : Velocity Contour at Static Core

22

Results :Streamlines

Results :Streamlines

