

Objective and Scope - CFD

Objective:

> Run the CFD analysis to check the Airflow performance and identify turbulence region if any inside MC500 unit.

Scope:

➤ To predict the Air Flow pattern inside the MC500 unit

CAD Model – MC500

CFD Model – MC500 – Supply side

CFD Model – MC500 – Return side

Modeling Details – Static Core

CFD Model – MC500 – Supply side

Static Pressure Drop Static core – MC500		
Volume Flowrate (CFM)	Pressure Drop (In Wg)	
350	0.22	
500	0.33	
750	0.52	

Static Core (21.65" X 10.86" X 21.65")

Static core modelled as block (porous media) in CFD

Y – Pressure Drop (pa)

X - Velocity (m/s)

Modeling Details – Static Core

CFD Model - MC500 - Exhaust side

Static Core (21.65" X 10.86" X 21.65")

Static core modelled as block (porous media) in CFD

Static Pressure Drop Static core – MC500		
Volume Flowrate (CFM)	Pressure Drop (In Wg)	
350	0.56	
500	0.87	
750	1.48	

Y – Pressure Drop (pa)

X - Velocity (m/s)

Modeling Details – Filter

CFD Model – MC500 – Filter

Filter (19.5" X 13.5" X 1.75")

Filter modelled as block (porous media) in CFD

Static Pressure Drop Filter – MC500		
Volume Flowrate (CFM)	Pressure Drop (In Wg)	
590	0.14	
980	0.25	
1215	0.34	

Y – Pressure Drop (pa)

X - Velocity (m/s)

Boundary Conditions

Boundary Conditions – MC500

Boundary Conditions (Supply & Exhaust)		
Extended Inlets	Pressure Inlet (0 PSI)	
Extended Outlets	Pressure Outlet (0 PSI)	
Fan Blades	Moving Reference Frame (1500 RPM)	
Filters	Porous Medium	
Static Core	Porous Medium	

Fan blades rotation are modelled by the Moving Reference Frame (MRF) method.

CFD Results

Pressure drop for MC 500 Filter and Static Core has been recorded in the table below

	Supply Air Unit	Exhaust Air Unit
Flowrate (CFM)	808	592.2

	Supply Air Unit Δ Ps (in.w.g.)	Exhaust Air Unit Δ Ps (in.w.g.)
Filter	0.151	0.107
Static Core	0.428	0.687

CFD Results – MC500 Supply Side

Results: Velocity Contour

Results: Velocity Contour

Results: Velocity Contour at Filter Outlet

Uniformity index close to 1 which indicates uniform air-flow

Results: Velocity Contour at Static Core

Uniformity index close to 1 which indicates uniform air-flow

[ft min^-1]

Results : Streamlines

Results :Streamlines

CFD Results –MC500 Exhaust Side

Results: Velocity Contour

Results: Velocity Contour

Results: Velocity Contour at Filter Outlet

Uniformity index close to 1 which indicates uniform air-flow

Results: Velocity Contour at Static Core

Uniformity index close to 1 which indicates uniform air-flow

[ft min^-1]

Results : Streamlines

Results :Streamlines

